
STA 414/2104

Statistical Methods for Machine Learning and Data Mining

Radford M. Neal, University of Toronto, 2013

Week 2

Modeling Data with Linear Combinations of Basis Functions

A Type of Supervised Learning Problem

We want to model data (x1, y1), . . . , (xn, yn), where xi is a vector of p inputs

(predictors) for case i, and yi is the target (response) variable for case i, which is

real-valued.

We are trying to predict y from x, for some future test case, but we are not trying

to model the distribution of x.

Suppose also that we don’t expect the best predictor for y to be a linear function

of x, so ordinary linear regression on the original variables won’t work well.

We need to allow for a non-linear function of x, but we don’t have any theory

that says what form this function should take. What to do?

An Example Problem

As an illustration, we can use the synthetic data set looked at previously — 50

points generated with x uniform from (0, 1) and y set by the formula:

y = sin(1 + x2) + noise

where the noise has N(0, 0.032) distribution.

0.0 0.2 0.4 0.6 0.8 1.0

0.
85

0.
90

0.
95

1.
00

1.
05

true function and data points

The noise-free true function, sin(1 + x2), is shown by the line.

This is simpler than real machine learning problems, but lets us look at plots...

Linear Basis Function Models

We earlier looked at fitting this data by least-squares linear regression, using not

just x, but also x2, x3, etc., up to (say) x4 as predictors.

This is an example of a linear basis function model.

In general, we do linear regression of y on φ1(x), φ2(x), . . . , φm−1(x), where the

φj are basis functions, that we have selected to allow for a non-linear function of x.

This gives the following model:

y = f(x, β) + noise

f(x, β) = β0 +
m−1∑

j=1

βjφj(x) = βTφ(x)

where β is the vector of all m regression coefficients (including the intercept, β0)

and φ(x) is the vector of all basis function values at input x, including φ0(x) = 1

for the intercept.

Maximum Likelihood Estimation

Suppose we assume that the noise in the regression model is Gaussian (normal)

with mean zero and some variance σ2, independent for each case.

With this assumption, we can write down the likelihood function for the

parameters β and σ, which is the joint probability density of all the targets in

the training set as a function of β and σ:

L(β, σ) = P (y1, . . . , yn |x1, . . . , xn, β, σ)

=

n∏

i=1

N(yi |β
Tφ(xi), σ

2)

where N(y |µ, σ2) is the density for y under a normal distribution with mean µ

and variance σ2.

The maximum likelihood estimates for the parameters are the values of β and σ

that maximize this likelihood. Equivalently, they maximize the log likelihood,

which, ignoring terms that don’t depend on β or σ, is

logL(β, σ) = −n log(σ) −
1

2σ2

n∑

i=1

(yi − βTφ(xi))
2

Least Squares Estimation

From this log likelihood function, we see that regardless of what σ might be, the

maximum likelihood estimate of β is the value that minimizes the sum of squared

prediction errors over training cases.

Let’s put the values of all basis functions in all training cases into an n×m

matrix Φ, with Φij = φj(xi). We also put the target values for all training cases

into a vector y.

We can now write the sum of squared errors on training cases as

||y − Φβ||2 = (y − Φβ)T (y − Φβ)

This is minimized for the value of β where its gradient is zero, which is where

−2ΦT (y − Φβ) = 0

Solving this, the least squares estimate of β is

β̂ = (ΦTΦ)−1ΦTy

This assumes that ΦTΦ is non-singular, so that there is a unique solution.

When m is greater than n, this will not be the case!

Results with Polynomial Basis Functions

Recall we looked before at least-squares fits of polynomial models with increasing

order, which can be viewed as basis function models with φj(x) = xj .

0.0 0.2 0.4 0.6 0.8 1.0

0.
85

0.
90

0.
95

1.
00

1.
05

second−order polynomial model

0.0 0.2 0.4 0.6 0.8 1.0

0.
85

0.
90

0.
95

1.
00

1.
05

fourth−order polynomial model

0.0 0.2 0.4 0.6 0.8 1.0

0.
85

0.
90

0.
95

1.
00

1.
05

sixth−order polynomial model

The gray line is the true noise-free function. We see that a second-order fit is too

simple, but a sixth-order fit is too complex, producing “overfitting”.

Gaussian Basis Functions

Polynomials are global basis functions, each affecting the prediction over the

whole input space. Often, local basis functions are more appropriate. One

possibility is to use functions proportional to Gaussian probability densities:

φj(x) = exp(−(x− µj)
2/2s2)

Here are these basis functions for s = 0.1, with the µj on a grid with spacing s:

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Gaussian basis functions, s = 0.1

Results with Gaussian Basis Functions

Here are the results using Gaussian basis functions (plus φ0(x) = 1) on the

example dataset, with varying width (and spacing) s:

0.0 0.2 0.4 0.6 0.8 1.0

0.
85

0.
90

0.
95

1.
00

1.
05

Gaussian basis function fit, s = 0.1

0.0 0.2 0.4 0.6 0.8 1.0

0.
85

0.
90

0.
95

1.
00

1.
05

Gaussian basis function fit, s = 0.5

0.0 0.2 0.4 0.6 0.8 1.0

0.
85

0.
90

0.
95

1.
00

1.
05

Gaussian basis function fit, s = 2.5

The estimated values for the βj are not what you might guess. For the middle

model above, they are as follows:

6856.5 -3544.1 -2473.7 -2859.8 -2637.7 -2861.5 -2468.0 -3558.4

Regularized Linear Basis Function Models

Maximum Penalized Likelihood Estimation

We can try to avoid the poor results of maximum likelihood when there are many

parameters by adding a penalty to the log likelihood, that favours non-extreme

values for the parameters. This procedure is also called regularization

For regression with Gaussian noise, we minimize the sum of squared errors on

training cases plus this penalty.

Quadratic penalties are easiest to implement, as they combine with the squared

error to still allow solution by matrix operations. For basis function models, we

might use a penalty that encourages all βj (except β0) to be close to zero:

λ
m−1∑

j=1

β2

j

Here, λ controls the strength of the penalty, which we must somehow decide on.

(One could include β2
0
in the penalty, but this usually doesn’t make sense, since

we usually don’t want to bias the intercept to be near zero.)

Solution for Penalized Least Squares

We found the least squares solution before by equating the gradient of the

squared error to zero. Now we add the gradient of the penalty function as well,

and hence solve

2λβ∗ − 2ΦT (y − Φβ) = 0

where β∗ is equal to β except that β0 is zero.

Solving this, the penalized least squares estimate of β is

β̂ = (λI∗ +ΦTΦ)−1ΦTy

where I∗ is like the identity matrix except that I∗
1,1 = 0.

Note that this estimate will be uniquely defined regardless of how big m and n

are, as long as λ is greater than zero.

Results with Regularized Gaussian Basis Functions

Here are the results with λ = 0.1:

0.0 0.2 0.4 0.6 0.8 1.0

0.
85

0.
90

0.
95

1.
00

1.
05

Gaussian basis function fit, s = 0.1 lambda = 0.1

0.0 0.2 0.4 0.6 0.8 1.0

0.
85

0.
90

0.
95

1.
00

1.
05

Gaussian basis function fit, s = 0.5 lambda = 0.1

0.0 0.2 0.4 0.6 0.8 1.0

0.
85

0.
90

0.
95

1.
00

1.
05

Gaussian basis function fit, s = 2.5 lambda = 0.1

More Results with Regularized Gaussian Basis Functions

Here are the results with λ = 1:

0.0 0.2 0.4 0.6 0.8 1.0

0.
85

0.
90

0.
95

1.
00

1.
05

Gaussian basis function fit, s = 0.1 lambda = 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
85

0.
90

0.
95

1.
00

1.
05

Gaussian basis function fit, s = 0.5 lambda = 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
85

0.
90

0.
95

1.
00

1.
05

Gaussian basis function fit, s = 2.5 lambda = 1

Yet More Results with Regularized Gaussian Basis Functions

Here are the results with λ = 10:

0.0 0.2 0.4 0.6 0.8 1.0

0.
85

0.
90

0.
95

1.
00

1.
05

Gaussian basis function fit, s = 0.1 lambda = 10

0.0 0.2 0.4 0.6 0.8 1.0

0.
85

0.
90

0.
95

1.
00

1.
05

Gaussian basis function fit, s = 0.5 lambda = 10

0.0 0.2 0.4 0.6 0.8 1.0

0.
85

0.
90

0.
95

1.
00

1.
05

Gaussian basis function fit, s = 2.5 lambda = 10

And Yet More Results. . .

Here are the results with λ = 0.01:

0.0 0.2 0.4 0.6 0.8 1.0

0.
85

0.
90

0.
95

1.
00

1.
05

Gaussian basis function fit, s = 0.1 lambda = 0.01

0.0 0.2 0.4 0.6 0.8 1.0

0.
85

0.
90

0.
95

1.
00

1.
05

Gaussian basis function fit, s = 0.5 lambda = 0.01

0.0 0.2 0.4 0.6 0.8 1.0

0.
85

0.
90

0.
95

1.
00

1.
05

Gaussian basis function fit, s = 2.5 lambda = 0.01

Conclusions from this Example

We see that we can control overfitting with Gaussian basis functions either by

choosing the width of the basis functions, s, to be large, or by using a positive

penalty, λ.

It seems that we may need to adjust both s and λ to get the best results.

How can we make such adjustments?

In real problems, we can’t look at how the results match the true function, as we

did here!

Choosing Parameters of Learning Methods by Cross-Validation

Using a Set of Validation Cases

In supervised learning, we try to learn the relationship of targets to inputs from a

set of training cases, where both are known.

We then use what we have learned to predict the target for some test case, where

only the inputs are known. We want to use a variaton of our learning method

that does as well as possible at these predictions.

One way:

1. Randomly divide the training set into an estimation set and a validation set.

2. Try out some variations on the method(s) — eg, different basis function

widths, different penalty magnitudes, different number of nearest neighbors

— pretending that only the data in the estimation set is available for training.

3. See how well each variation does at predicting cases in the validation set.

4. Use the variaton with the best average performance on the validation set to

make the prediction for the test case, using all training cases (in both

estimation and validation sets).

Choice of Loss Function for Validation

To use this validation procedure, we need some measure of predictive performance

to average over validation cases. This can take the form of a loss function, ℓ,

which takes the actual target, y, and a prediction for the target as argments.

For a point prediction, ŷ, two loss functions are commonly used:

Squared error loss: ℓ(y, ŷ) = (y − ŷ)2.

Absolute error loss: ℓ(y, ŷ) = |y − ŷ|.

When the prediction is a distribution, P̂ , for y, one can use

log probability loss: ℓ(y, P̂) = − log P̂ (y).

We should choose a loss function that comes close to capturing what we’re

actually worried about! Squared error is very traditional, however.

Selection of s and λ for the Previous Example

I looked at the square root of the average squared error on validation cases when

fitting on the other cases using penalized least squares.

Results using cases 1 to 10 for the validation set:

lambda=0.001 lambda=0.01 lambda=0.1 lambda=1 lambda=10

s=0.02 0.0869 0.0722 0.0476 0.0413 0.0475

s=0.1 ->0.0323 ->0.0323 0.0330 0.0342 0.0400

s=0.5 0.0352 0.0364 0.0389 0.0443 0.0514

s=2.5 0.0435 0.0506 0.0518 0.0553 0.0613

Note: The cases here are in random order. If they aren’t one shouldn’t just take

the first 10 as the validation set! A random subset is needed.

It looks like s = 0.1 and λ = 0.01 or λ = 0.001 is best.

But what if we had used a different validation set?

Selections from Five Validation Sets

Here the selections for s and λ using five validation sets, partitioning the 50 cases:
Using cases 1 to 10 as the validation set:

lambda=0.001 lambda=0.01 lambda=0.1 lambda=1 lambda=10

s=0.02 0.0869 0.0722 0.0476 0.0413 0.0475

s=0.1 ->0.0323 ->0.0323 0.0330 0.0342 0.0400

s=0.5 0.0352 0.0364 0.0389 0.0443 0.0514

s=2.5 0.0435 0.0506 0.0518 0.0553 0.0613

Using cases 11 to 20 as the validation set:

lambda=0.001 lambda=0.01 lambda=0.1 lambda=1 lambda=10

s=0.02 0.1285 0.0520 0.0491 0.0522 0.0544

s=0.1 0.0401 0.0359 0.0304 0.0281 0.0340

s=0.5 0.0273 ->0.0269 0.0273 0.0330 0.0442

s=2.5 0.0303 0.0382 0.0409 0.0491 0.0573

Using cases 21 to 30 as the validation set:

lambda=0.001 lambda=0.01 lambda=0.1 lambda=1 lambda=10

s=0.02 0.0409 0.0426 0.0378 0.0344 0.0439

s=0.1 0.0342 0.0331 0.0322 0.0310 0.0358

s=0.5 0.0304 0.0285 ->0.0278 0.0320 0.0457

s=2.5 0.0294 0.0353 0.0394 0.0513 0.0605

Using cases 31 to 40 as the validation set:

lambda=0.001 lambda=0.01 lambda=0.1 lambda=1 lambda=10

s=0.02 0.0558 0.0418 0.0444 0.0452 0.0577

s=0.1 0.0523 0.0404 0.0360 ->0.0347 0.0468

s=0.5 0.0392 0.0383 0.0397 0.0424 0.0587

s=2.5 0.0413 0.0446 0.0499 0.0651 0.0749

Using cases 41 to 50 as the validation set:

lambda=0.001 lambda=0.01 lambda=0.1 lambda=1 lambda=10

s=0.02 0.0688 0.0363 0.0287 ->0.0239 0.0360

s=0.1 0.0305 0.0310 0.0309 0.0299 0.0322

s=0.5 0.0327 0.0328 0.0334 0.0349 0.0384

s=2.5 0.0354 0.0414 0.0405 0.0422 0.0504

S-Fold Cross Validation

The variablility in selection of s and λ from the random choice of a subset of

validation cases can be reduced by averaging the squared error over S validation

sets, that partition the whole training set.

Here are the square roots of the average validation squared error over the S = 5

validation sets from the previous slide:

lambda=0.001 lambda=0.01 lambda=0.1 lambda=1 lambda=10

s=0.02 0.0820 0.0506 0.0422 0.0406 0.0485

s=0.1 0.0387 0.0347 0.0326 ->0.0317 0.0381

s=0.5 0.0332 0.0329 0.0338 0.0377 0.0482

s=2.5 0.0364 0.0423 0.0448 0.0531 0.0614

Does the selection of s = 0.1 and λ = 1 seem reasonable given the data points? If

you know the true function, does it seem to actually be the best choice?

Other Penalty Functions

A Penalty Function Allowing Some Big Parameters

Penalty functions other than λ
m−1∑
j=1

β2

j are sometimes used.

One possibility is a penalty of λ
m−1∑
j=1

log(1 + β2

j).

This penalizes βj when it is near zero (where log(1 + β2

j) ≈ β2

j), but not much

when |βj | is big. This may be good if you expect a few βj to be much bigger than

the rest, and don’t want to shrink them towards zero.

But the maximum penalized likelihood estimate with this penalty may not be

unique.

The Lasso Penalty

The lasso penalty is λ
m−1∑
j=1

|βj |.

Finding the maximum penalized likelihood estimate for this penalty can’t be done

with simple matrix operations, but it can be done efficiently. There is a unique

solution.

(These are both consequences of the fact that the penalty plus log likelihood is

still a convex function.)

The Lasso Produces Sparse Estimates

The lasso penalty has the property that the penalized maximum likelihood

estimate often has some β̂j that are exactly zero. This doesn’t happen when the

penalty involves β2

j .

Why? When βj is close to zero, the derivative of β2

j is also close to zero — so the

likelihood will dominate (and in general doesn’t favour βj being exactly zero).

But even when βj is close to zero, the derivative of |βj | is ±1, so the penalty can

drive βj to be exactly zero.

Is this desirable? It may be if any of the following apply:

• You believe that many of the true βj are exactly zero.

• You prefer many βj to be exactly zero so the result is easier to interpret.

• You want many βj to be exactly zero to save computation time later, or to

save measuring the corresponding xj for new test cases.

But often you don’t believe that any βj are exactly zero, in which case setting

them to zero may degrade predictive performance.

