STA 414/2104
Statistical Methods for Machine Learning and Data Mining

Radford M. Neal, University of Toronto, 2014

Week 6



Bayesian Inference by Monte Carlo



Monte Carlo Methods

A very general approach to Bayesian computation — applicable even to very
high-dimensional problems — is to obtain a sample of points from the posterior

distribution, and use it to make Monte Carlo estimates.

A single sample point will contain values for all the unknown parameters,
hyperparameters, latent variables, missing data values, etc. — everything not
known, except what we don’t care about (and isn’t linked to other things) or that

we have integrated away analytically.

We use this sample to approximate expected values by averages over the sample
points. For example, from K values, 01, ... 05 for a parameter, sampled from

P(0]|data), we can approximate the predictive probability that Y = 1 by
P(Y =1 | data) — / P(Y = 1| 6) P(0|data) do
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If the 0(F) values are independent, the approximation converges to the true value

as K — oo, by the Law of Large Numbers.



Monte Carlo with Independent Points

Monte Carlo is simplest when we can directly sample K independent points from

the distribution of interest.

Let’s denote the probability /density function of interest as 7(x), and suppose
that we are interested in the expectation of some function a(x). Note that x is

typically high dimensional.

The Monte Carlo estimate based on K sample points, (), ... 2 will be
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If the variance of a(x) is finite, we can get an indication of the accuracy of this
estimate from its standard error — an estimate of the standard deviation of @ in

imaginary repetitions of the estimation procedure. This standard error is

SE.a = /s2/K

where s2 is the sample variance of a:
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Application: General Expectations for Conjugate Models

Efficient direct sampling of independent points from the posterior is usually
possible only for models with conjugate priors. Typically, posterior means of
parameters can be found analytically for such models, so Monte Carlo isn’t

necessary.

However, even for a conjugate model, the expectation of some complicated
function of the parameters may be an integral that isn’t analytically tractable.
But a Monte Carlo estimate based on independent points can be found as long as

the posterior can be efficiently sampled.

This is what really makes conjugate models tractable, even when the dimension of

the parameter space is high.



Importance Sampling

When there is no efficient way to sample independently from 7(x) we can instead
sample independently from some “similar” distribution, 7*(x), and estimate the

expectation of a(z) by
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Note that we don’t need the normalizing constants for 7 or 7, since they will

cancel in the ratio above.

As long as 7*(x) > 0 for all x where w(x) > 0, this converges to the expectation of

a(z) under m as K — co. We can see this since
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Accuracy of Importance Sampling

Here’s the importance sampling estimate again:
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If we know the normalizing constants for 7 or 7*, we could omit the denominator,

since it converges to one. But that estimator is often less accurate, so we

probably shouldn'’t.

We can get a standard error for a;s by taking the square root of an estimate of

1ts variance:
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This is discussed in my paper on “Annealed Importance Sampling”.



Usefulness of Importance Sampling

The usefulness of importance sampling depends crucially on whether a good 7*

can be found, that can be efficiently sampled, and leads to ars being accurate.

Accuracy will be poor if 7*(x) is very small in a region with non-negligible
probability under m — then few points will be sampled from a region that

actually is important to estimating F(a(x)).

Worse, it’s possible that no points will be sampled from this region — then the
estimate will be inaccurate, but the standard error obtained may not indicate

that it is inaccurate.

But you can’t just make 7* be very broad — then most points sampled will be

wasted, with 7(x) being very small.

Direct use of importance sampling for Bayesian inference is usually practical only
in moderate dimensions (eg, 10), and then only after significant fiddling to get a

good 7* (eg, some heavy-tailed distribution located at the posterior mode).



Importance Sampling Using the Prior

A particularly simple way to do importance sampling for Bayesian inference is to

sample from prior distribution for the parameters, having density P(0).

The importance sampling estimate of the expectation of some function of the

parameters, a(6), with respect to the posterior distribution is then
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When making predictions for a new data point, v, this becomes
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The denominator above is an estimate of the marginal likelihood for the model.

However, this works well only if the factor by which the posterior is more

concentrated than the prior isn’t too large (few parameters, not too much data).



Obtaining a Sample by Simulating a Markov Chain

When the posterior distribution is too complex to sample from directly, and we
can’t find a good importance sampling distribution, we can instead simulate a

Markov chain that will converge (asymptotically) to the posterior distribution.

States from the latter portion of this Markov chain will come (asymptotically)

from the posterior distribution, but they will be dependent.

We can still use these states to make Monte Carlo estimates, but we need to

adjust the standard error to account for the dependence.

Finding such a Markov chain sounds hard, but fortunately there are general
schemes that make this possible even for difficult problems. This Markov chain
Monte Carlo (MCMC) approach is therefore very general. MCMC can also be
very slow in some circumstances, but despite this, it is often the only viable

approach to Bayesian inference using complex models.



