STA 437/1005, Fall 2009 - Solutions to Assignment \#1

Q1(a):

$E\left(X_{1}\right)=E\left(U_{1}\right)+E\left(U_{2}\right)+E\left(\epsilon_{1}\right)=0$, and the same for X_{2} and X_{3}. The the mean vector is $\mu=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$.

Since U_{1}, U_{2}, and ϵ_{1} are independent, $\operatorname{Var}\left(X_{1}\right)=\operatorname{Var}\left(U_{1}\right)+\operatorname{Var}\left(U_{2}\right)+\operatorname{Var}\left(\epsilon_{1}\right)=1+1+2^{2}=6$, and the same for X_{2} and X_{3}.

To find the covariances:

$$
\begin{aligned}
\operatorname{Cov}\left(X_{1}, X_{2}\right)= & E\left[\left(X_{1}-E\left(X_{1}\right)\right)\left(X_{2}-E\left(X_{2}\right)\right]\right. \\
= & E\left[\left(U_{1}+U_{2}+\epsilon_{1}\right)\left(U_{2}+U_{3}+\epsilon_{2}\right)\right] \\
= & E\left(U_{1} U_{2}\right)+E\left(U_{1} U_{3}\right)+E\left(U_{1} \epsilon_{2}\right) \\
& +E\left(U_{2} U_{2}\right)+E\left(U_{2} U_{3}\right)+E\left(U_{2} \epsilon_{2}\right) \\
& +E\left(\epsilon_{1} U_{2}\right)+E\left(\epsilon_{1} U_{3}\right)+E\left(\epsilon_{1} \epsilon_{2}\right) \\
= & E\left(U_{2}^{2}\right)=1
\end{aligned}
$$

This uses the fact that if A and B are independent, then $E(A B)=E(A) E(B)$, which is zero if either $E(A)=0$ or $E(B)=0$ (or both).

The covariance matrix is therefore

$$
\Sigma=\left[\begin{array}{lll}
6 & 1 & 1 \\
1 & 6 & 1 \\
1 & 1 & 6
\end{array}\right]
$$

Q1(b):

From symmetry Σ^{-1} must have the following form, for some a and b :

$$
\Sigma^{-1}=\left[\begin{array}{ccc}
a & b & b \\
b & a & b \\
b & b & a
\end{array}\right]
$$

The requirement that $\Sigma \Sigma^{-1}=I$ gives the two equations

$$
6 a+2 b=1, \quad 7 b+a=0
$$

Solving these give $a=7 / 40$ and $b=-1 / 40$, so

$$
\Sigma^{-1}=\left[\begin{array}{rrr}
7 / 40 & -1 / 40 & -1 / 40 \\
-1 / 40 & 7 / 40 & -1 / 40 \\
-1 / 40 & -1 / 40 & 7 / 40
\end{array}\right]
$$

Q1(c):
Result 4.6 on page 160 of the text says that the conditional distribution a group (1) of variables with a MVN distribution given values for another group (2) of variables is normal with

$$
\begin{aligned}
\text { mean } & =\mu_{1}+\Sigma_{12} \Sigma_{22}^{-1}\left(x_{2}-\mu_{2}\right) \\
\text { covariance } & =\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}
\end{aligned}
$$

Applying this to finding the conditional distribution of X_{3} given $X_{1}=x_{1}$ and $X_{2}=x_{2}$ produces a normal distribution with

$$
\begin{aligned}
\text { mean } & =\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{ll}
6 & 1 \\
1 & 6
\end{array}\right]^{-1}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
\text { variance } & =6-\left[\begin{array}{lll}
1 & 1
\end{array}\right]\left[\begin{array}{ll}
6 & 1 \\
1 & 6
\end{array}\right]^{-1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{aligned}
$$

One can easily find (as in part (b)) that

$$
\left[\begin{array}{ll}
6 & 1 \\
1 & 6
\end{array}\right]^{-1}=\left[\begin{array}{rr}
6 / 35 & -1 / 35 \\
-1 / 35 & 6 / 35
\end{array}\right]
$$

From that, one can calculate that the conditional distribution for X_{3} has

$$
\begin{aligned}
\text { mean } & =\left(x_{1}+x_{2}\right) / 7 \\
\text { variance } & =40 / 7
\end{aligned}
$$

Q2(a):

Let A be a $k \times k$ symmetric real matrix. By the spectral decomposition theorem, we can write it as

$$
A=\lambda_{1} e_{1} e_{1}^{\prime}+\cdots+\lambda_{k} e_{k} e_{k}^{\prime}
$$

where the e_{i} are orthogonal eigenvectors of length one, and the λ_{i} are the corresponding eigenvalues.

It is easy to see that the trace of a sum of matrices is equal to the sum of their traces, and that the trace of a scalar times a matrix is equal to the scalar times the trace of the matrix. So

$$
\operatorname{trace}(A)=\lambda_{1} \operatorname{trace}\left(e_{1} e_{1}^{\prime}\right)+\cdots+\lambda_{k} \operatorname{trace}\left(e_{k} e_{k}^{\prime}\right)
$$

The diagonal elements of $e_{i} e_{i}^{\prime}$ are $e_{i 1}^{2}, \ldots, e_{i k}^{2}$. The sum of these is one, since the e_{i} have length one. So

$$
\operatorname{trace}(A)=\lambda_{1}+\cdots+\lambda_{k}
$$

Q2(b):

The covariance matrix of $Y=Q X$ is $\Sigma_{Y}=Q \Sigma_{X} Q^{\prime}$ (see p. 76 of the text). If e is an eigenvector of Σ_{X}, with eigenvalue λ, then $Q e$ is an eigenvector of Σ_{Y}, with eigenvalue λ, since

$$
\Sigma_{Y}(Q e)=Q \Sigma_{X} Q^{\prime} Q e=Q \Sigma_{X} e=Q \lambda e=\lambda(Q e)
$$

The set of eigenvalues for Σ_{Y} is therefore the same as for Σ_{X}. So by part (a), the trace of Σ_{Y} is the same as the trace of Σ_{X}.

Q3(a):

Let Y_{j} be the fuel consumption (in litres per 100 kilometres) of car j. We know that the Y_{j} are independent with $N\left(\mu, 0.5^{2}\right)$ distribution.

The observations $X_{j 1}$ and $X_{j 2}$ can be written as follows:

$$
\begin{aligned}
X_{j 1} & =0.1 Y_{j}+\epsilon_{j 1} \\
X_{j 2} & =0.9 Y_{j}+\epsilon_{j 2}
\end{aligned}
$$

The 0.1 and 0.9 factors come from the measurements being made after 10 kilometres and after 90 kilometres. The measurement errors, $\epsilon_{j 1}$ and $\epsilon_{j 2}$, are independent (of each other, of Y_{j}, and of Y_{k} and $\epsilon_{k \ell}$ for $\left.k \neq j\right)$. The distribution of $\epsilon_{j 1}$ and $\epsilon_{j 2}$ is $N\left(0,0.1^{2}\right)$.
The mean vector for $\left[\begin{array}{ll}X_{j 1} & X_{j 2}\end{array}\right]^{\prime}$ is

$$
\left[\begin{array}{l}
E\left(0.1 Y_{j}+\epsilon_{j 1}\right) \\
E\left(0.9 Y_{j}+\epsilon_{j 1}\right)
\end{array}\right]=\left[\begin{array}{l}
0.1 \mu \\
0.9 \mu
\end{array}\right]
$$

The variances of $X_{j 1}$ and $X_{j 2}$ are

$$
\begin{aligned}
& \operatorname{Var}\left(X_{j 1}\right)=0.1^{2} \operatorname{Var}\left(Y_{j}\right)+\operatorname{Var}\left(\epsilon_{j 1}\right) \\
& \operatorname{Var}\left(X_{j 1}\right)=0.9^{2} \operatorname{Var}\left(Y_{j}\right)+\operatorname{Var}\left(\epsilon_{j 1}\right)=0.1^{2} \times 0.1^{2}=0.0125 \\
& 2 \times 0.5^{2}+0.1^{2}=0.2125
\end{aligned}
$$

The covariance of $X_{j 1}$ and $X_{j 2}$ is

$$
\begin{aligned}
\operatorname{Cov}\left(X_{j 1}, X_{j 2}\right) & =E\left[\left(X_{j 1}-E\left(X_{j 1}\right)\left(X_{j 2}-E\left(X_{j 2}\right)\right]=E\left[\left(0.1 Y_{j}+\epsilon_{j 1}\right)\left(0.9 Y_{j}+\epsilon_{j 2}\right)\right]\right.\right. \\
& =E\left[\left(0.1 Y_{j}\right)\left(0.9 Y_{j}\right)\right]=0.09 E\left(Y_{j}^{2}\right)=0.09 \times 0.5^{2}=0.0225
\end{aligned}
$$

The covariance matrix of $\left[\begin{array}{ll}X_{j 1} & X_{j 2}\end{array}\right]^{\prime}$ is therefore

$$
\Sigma=\left[\begin{array}{ll}
0.0125 & 0.0225 \\
0.0225 & 0.2125
\end{array}\right]
$$

Q3(b):

(See p. 121 of the text.) The mean of $\left[\begin{array}{ll}\bar{X}_{1} & \bar{X}_{2}\end{array}\right]^{\prime}$ is the same as that of each $\left[\begin{array}{ll}X_{j 1} & X_{j 2}\end{array}\right]^{\prime}$, which is $\left[\begin{array}{ll}0.1 \mu & 0.9 \mu\end{array}\right]^{\prime}$. The covariance matrix of $\left[\begin{array}{ll}\bar{X}_{1} & \bar{X}_{2}\end{array}\right]^{\prime}$ is $\Sigma / 10$, which is

$$
\left[\begin{array}{ll}
0.00125 & 0.00225 \\
0.00225 & 0.02125
\end{array}\right]
$$

Q3(c):
The mean of $a \bar{X}_{1}+b \bar{X}_{2}$ is $a E\left(\bar{X}_{1}\right)+b E\left(\bar{X}_{2}\right)=(0.1 a+0.9 b) \mu$. For an unbiased estimator of μ, this must be equal to μ, so we must have $0.1 a+0.9 b=1$. It follows that $a=10-9 b$. We can therefore look for the value of b that gives the smallest variance, when setting $a=10-9 b$. The variance of $(10-9 a) \bar{X}_{1}+b \bar{X}_{2}$ is (see p. 76 of the text)

$$
[(10-9 b) b]\left[\begin{array}{ll}
0.00125 & 0.00225 \\
0.00225 & 0.02125
\end{array}\right]\left[\begin{array}{c}
(10-9 b) \\
b
\end{array}\right]=0.082 b^{2}-0.18 b+0.125
$$

We want to find the value of b that minimizes this. We can do this by setting the derivative with respect to b to zero:

$$
2 \times 0.082 b-0.18=0
$$

from which we get $b=0.18 /(2 \times 0.082)=1.09756 \ldots$ and $a=10-9 b=0.12195 \ldots$

