
STA 437/1005, Fall 2009 — Solutions to Assignment #1

Q1(a):

E(X1) = E(U1) + E(U2) + E(ε1) = 0, and the same for X2 and X3. The the mean vector is
µ = [0 0 0].

Since U1, U2, and ε1 are independent, Var(X1) = Var(U1)+Var(U2)+Var(ε1) = 1+1+22 = 6,
and the same for X2 and X3.

To find the covariances:

Cov(X1, X2) = E[(X1 − E(X1))(X2 − E(X2)]

= E[(U1 + U2 + ε1)(U2 + U3 + ε2)]

= E(U1U2) + E(U1U3) + E(U1ε2)
+E(U2U2) + E(U2U3) + E(U2ε2)
+E(ε1U2) + E(ε1U3) + E(ε1ε2)

= E(U2
2 ) = 1

This uses the fact that if A and B are independent, then E(AB) = E(A)E(B), which is zero
if either E(A) = 0 or E(B) = 0 (or both).

The covariance matrix is therefore

Σ =

 6 1 1
1 6 1
1 1 6


Q1(b):

From symmetry Σ−1 must have the following form, for some a and b:

Σ−1 =

 a b b
b a b
b b a


The requirement that ΣΣ−1 = I gives the two equations

6a + 2b = 1, 7b + a = 0

Solving these give a = 7/40 and b = −1/40, so

Σ−1 =

 7/40 −1/40 −1/40
−1/40 7/40 −1/40
−1/40 −1/40 7/40





Q1(c):

Result 4.6 on page 160 of the text says that the conditional distribution a group (1) of
variables with a MVN distribution given values for another group (2) of variables is normal
with

mean = µ1 + Σ12Σ−1
22 (x2−µ2)

covariance = Σ11 − Σ12Σ−1
22 Σ21

Applying this to finding the conditional distribution of X3 given X1 = x1 and X2 = x2

produces a normal distribution with

mean = [1 1]

[
6 1
1 6

]−1 [
x1

x2

]

variance = 6 − [1 1]

[
6 1
1 6

]−1 [
1
1

]

One can easily find (as in part (b)) that[
6 1
1 6

]−1

=

[
6/35 −1/35

−1/35 6/35

]

From that, one can calculate that the conditional distribution for X3 has

mean = (x1 + x2)/7

variance = 40/7

Q2(a):

Let A be a k × k symmetric real matrix. By the spectral decomposition theorem, we can
write it as

A = λ1e1e
′
1 + · · · + λkeke

′
k

where the ei are orthogonal eigenvectors of length one, and the λi are the corresponding
eigenvalues.

It is easy to see that the trace of a sum of matrices is equal to the sum of their traces, and
that the trace of a scalar times a matrix is equal to the scalar times the trace of the matrix.
So

trace(A) = λ1trace(e1e
′
1) + · · · + λktrace(eke

′
k)

The diagonal elements of eie
′
i are e2

i1, . . . , e
2
ik. The sum of these is one, since the ei have

length one. So

trace(A) = λ1 + · · · + λk



Q2(b):

The covariance matrix of Y = QX is ΣY = QΣXQ′ (see p. 76 of the text). If e is an
eigenvector of ΣX , with eigenvalue λ, then Qe is an eigenvector of ΣY , with eigenvalue λ,
since

ΣY (Qe) = QΣXQ′Qe = QΣXe = Qλe = λ(Qe)

The set of eigenvalues for ΣY is therefore the same as for ΣX . So by part (a), the trace of
ΣY is the same as the trace of ΣX .

Q3(a):

Let Yj be the fuel consumption (in litres per 100 kilometres) of car j. We know that the Yj

are independent with N(µ, 0.52) distribution.

The observations Xj1 and Xj2 can be written as follows:

Xj1 = 0.1Yj + εj1

Xj2 = 0.9Yj + εj2

The 0.1 and 0.9 factors come from the measurements being made after 10 kilometres and
after 90 kilometres. The measurement errors, εj1 and εj2, are independent (of each other, of
Yj , and of Yk and εk` for k 6= j). The distribution of εj1 and εj2 is N(0, 0.12).

The mean vector for [Xj1 Xj2]′ is[
E(0.1Yj + εj1)

E(0.9Yj + εj1)

]
=

[
0.1µ

0.9µ

]

The variances of Xj1 and Xj2 are

Var(Xj1) = 0.12Var(Yj) + Var(εj1) = 0.12 × 0.52 + 0.12 = 0.0125

Var(Xj1) = 0.92Var(Yj) + Var(εj1) = 0.92 × 0.52 + 0.12 = 0.2125

The covariance of Xj1 and Xj2 is

Cov(Xj1, Xj2) = E[(Xj1 − E(Xj1)(Xj2 − E(Xj2)] = E[(0.1Yj + εj1)(0.9Yj + εj2)]

= E[(0.1Yj)(0.9Yj)] = 0.09E(Y 2
j ) = 0.09× 0.52 = 0.0225

The covariance matrix of [Xj1 Xj2]′ is therefore

Σ =

[
0.0125 0.0225

0.0225 0.2125

]



Q3(b):

(See p. 121 of the text.) The mean of [X1 X2]′ is the same as that of each [Xj1 Xj2]′, which
is [0.1µ 0.9µ]′. The covariance matrix of [X1 X2]′ is Σ/10, which is[

0.00125 0.00225

0.00225 0.02125

]

Q3(c):

The mean of aX1 + bX2 is aE(X1)+ bE(X2) = (0.1a+0.9b)µ. For an unbiased estimator
of µ, this must be equal to µ, so we must have 0.1a+0.9b = 1. It follows that a = 10−9b. We
can therefore look for the value of b that gives the smallest variance, when setting a = 10−9b.

The variance of (10− 9a)X1 + bX2 is (see p. 76 of the text)

[(10− 9b) b]

[
0.00125 0.00225

0.00225 0.02125

] [
(10− 9b)

b

]
= 0.082b2 − 0.18b + 0.125

We want to find the value of b that minimizes this. We can do this by setting the derivative
with respect to b to zero:

2× 0.082b − 0.18 = 0

from which we get b = 0.18/(2× 0.082) = 1.09756 . . . and a = 10− 9b = 0.12195 . . .


