UNIVERSITY OF TORONTO	1
Faculty of Arts and Science	2
DECEMBER EXAMINATIONS 2009	3
STA 437H1 F (plus STA 1005)	4
Duration - 3 hours	5
calculators are allowed.	6
	T

The six questions are worth equal amounts.

Answer in the space provided; if you run out, use the back of a page (and point to where).
Except as noted, when the answer is a number, you must provide an actual number (eg, 1.5 or $3 / 2$), not just a formula that could be evaluated to give this number.

Except as noted, you must explain how you obtained your answer to obtain full credit.

The following formulas may (or may not) be useful

Covariance of transformed random vector: $\operatorname{Cov}(\mathbf{C X})=\mathbf{C} \boldsymbol{\Sigma}_{\mathbf{X}} \mathbf{C}^{\prime}$

Probability density function for multivariate normal:

$$
f(\mathbf{x})=(2 \pi)^{-p / 2}|\Sigma|^{-1 / 2} \exp \left(-(\mathbf{x}-\mu)^{\prime} \mathbf{\Sigma}^{-1}(\mathbf{x}-\mu) / 2\right)
$$

Conditional mean and covariance for multivariate normal:

$$
\begin{aligned}
\text { Mean of } \mathbf{X}_{1} \text { given } \mathbf{X}_{2}=\mathbf{x}_{2} & =\mu_{1}+\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1}\left(\mathbf{x}_{2}-\mu_{2}\right) \\
\text { Covariance of } \mathbf{X}_{1} \text { given } \mathbf{X}_{2}=\mathbf{x}_{2} & =\boldsymbol{\Sigma}_{11}-\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21}
\end{aligned}
$$

T^{2} statistic for one sample: $T^{2}=n\left(\overline{\mathbf{X}}-\mu_{0}\right)^{\prime} \mathbf{S}^{-1}\left(\overline{\mathbf{X}}-\mu_{0}\right)$
The distribution of T^{2} under the null hypothesis is $[(n-1) p /(n-p)] F_{p, n-p}$, which is approximately χ_{p}^{2} when $n-p$ and n / p are both large.
T^{2} statistic for two samples, using pooled covariance estimate:

$$
T^{2}=\left(\left(\overline{\mathbf{X}}_{1}-\overline{\mathbf{X}}_{2}\right)-\delta_{0}\right)^{\prime}\left[\left(1 / n_{1}+1 / n_{2}\right) \mathbf{S}_{\text {pooled }}\right]^{-1}\left(\left(\overline{\mathbf{X}}_{1}-\overline{\mathbf{X}}_{2}\right)-\delta_{0}\right)
$$

Here, $\mathbf{S}_{\text {pooled }}=\left(\left(n_{1}-1\right) \mathbf{S}_{1}+\left(n_{2}-1\right) \mathbf{S}_{2}\right) /\left(n_{1}+n_{2}-2\right)$. The distribution of T^{2} is $\left[\left(n_{1}+n_{2}-2\right) p /\left(n_{1}+n_{2}-p-1\right)\right] F_{p, n_{1}+n_{2}-p-1}$ under the null hypothesis that $\mu_{1}-\mu_{2}=\delta_{0}$. This distribution is approximately χ_{p}^{2} when $n_{1}+n_{2}-p$ and $\left(n_{1}+n_{2}\right) / p$ are both large.

The factor analysis model: $\quad \mathbf{X}=\mu+\mathbf{L F}+\epsilon$

$$
\mathbf{F} \sim N(0, \mathbf{I}) \text { and independently } \epsilon \sim N(0, \mathbf{\Psi}), \text { with } \mathbf{\Psi} \text { diagonal. }
$$

