Answers to 2009 STA 437/1005 mid-term test
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By the spectral decomposition theorem, we can write any symmetric real matrix, A, as A = Ajeje} +
.-+ + Apege). Since the e; are orthogonal (hence linearly independent), we can write any non-zero
vector, ¢, as ¢ = cy1eq + - - - + cgeg, for some scalars ¢;, not all of which are zero. We can now write

c Ac as follows:
dAc = (creq + - +crer) (Mere] + -+ Aperey) (crer + -+ - + crep)
Multiplying this out, and noting that eje; = 1, and also that efe; = 0 when ¢ # j, we see that
dAc = EMN+ -+ EM

If all the A\ are positive, this must be greater than zero, since at least one of the ¢; is non-zero. The
matrix A is therefore positive definite.

First, note that the converse of part (a) is true: if a matrix A is positive definite, all its eigenvalues
are positive. To see this, suppose e is an eigenvalue of A (which we can take to be of length one), with
eigenvalue A\. Then ¢’ Ae > 0 by the definition of positive definiteness. But ¢’ Ae = e’de = Ae'e = A, so
A> 0.

Next, write A and B as follows, using the spectral decomposition theorem:

A = aiere] + - + aperel,

B = ﬁ1616/1 + -+ ﬁkekeﬁc
where eq,...,e; are the eigenvectors of both A and B, «ai,...,a, are the eigenvalues of A, and
b1, ..., 0k are the eigenvalues of B.

When we now multiply A and B, and note that eje; = 1, and also that eje; = 0 when i # j, we get

AB = aifiere] + -+ apfrexe),
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Since (e;e}) = efel = e;e}, each term above is symmetric, so AB is also symmetric. We can easily see

7 7

that the eigenvectors of AB are the same e;, and that the eigenvalues are the a;3; — for instance
ABer = oqfhereler + agflaesener +--- = aifhe;

If A and B are positive definite, then all the «; and 3; are positive, and therefore all the eigenvalues
of AB are positive. By part (a), AB is therefore positive definite.
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The T? statistic for testing Hy : =0 versus Hy : pu # 0 is

2 _ ra—1=
T° = na'Sy'z

Let A be any non-singular p X p matrix. Transforming to y = Az, we will find that the sample mean
is § = AT and the sample covariance matrix is Sy = ASxA’. The new T? statistic will then be

T = nySy'y
= n(Az)(ASxA')"(Az)
= nTAATISI AT Az
= ni'Sy'z

which is the same as the old T2 statistic.

D, no outliers, not normal (heavy-tailed).
E, no outliers, not normal (light-tailed).
A, no outliers, no reason to think it’s not normal (note the small sample size).

B, one outlier (rightmost point, about 7), no reason to think it’s not normal (after ignoring the outlier).
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Normal, with mean 0 + 1(8)"!(ys —0) = y4/8 and variance 5 — 1(8)~'1 = 39/8.



