1. Consider the following six observations of two variables:

100	20
95	18
110	22
100	20
100	21
95	19

a) [10 marks] Find the sample mean vector for this data set.

Answer: $[100,20]^{\prime}$
b) [30 marks] Find the sample covariance matrix for this data. (Use the definition in which the divisor is the number of observations minus one.)

$$
\text { Answer: }\left[\begin{array}{cc}
30 & 7 \\
7 & 2
\end{array}\right]
$$

2. Let $X=\left[X_{1}, X_{2}, X_{3}\right]^{\prime}$ be a three-dimensional random vector. Suppose that X has mean vector $\mu=[0,0,1]^{\prime}$ and covariance matrix Σ and inverse covariance Σ^{-1} as below:

$$
\Sigma=\left[\begin{array}{ccc}
1 & -1 / 2 & 1 / 2 \\
-1 / 2 & 1 & 1 / 2 \\
1 / 2 & 1 / 2 & 4
\end{array}\right], \quad \Sigma^{-1}=\left[\begin{array}{ccc}
5 / 3 & 1 & -1 / 3 \\
1 & 5 / 3 & -1 / 3 \\
-1 / 3 & -1 / 3 & 1 / 3
\end{array}\right]
$$

a) [40 marks] Define $Y=\left[Y_{1}, Y_{2}\right]^{\prime}$ with $Y_{1}=X_{1}-X_{2}$ and $Y_{2}=X_{1}+2 X_{3}$. Find the mean vector and covariance matrix for Y.

Answers: $E(Y)=[0,2]^{\prime}, \quad \operatorname{Cov}(Y)=\left[\begin{array}{cc}3 & 3 / 2 \\ 3 / 2 & 19\end{array}\right]$
b) [20 marks] Suppose the vector X has the multivariate normal distribution with mean $\mu=[0,0,1]^{\prime}$ and with covariance matrix Σ given above. Which of the points below have the same probability density as the point $[1,0,1]$ '? Write "Yes" or "No" for each (no explanation required).

$$
\begin{aligned}
& {[-1,0,1] \quad \text { Answer: Yes }} \\
& {[0,0,1] \quad \text { Answer: No }} \\
& {[0,0,6] \quad \text { Answer: No }} \\
& {[0,1,0] \quad \text { Answer: No }} \\
& {[0,-1,1] \quad \text { Answer: Yes }}
\end{aligned}
$$

