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Abstract

Probabilistic inference is an attractive approach to uncertain reasoning and em-
pirical learning in artificial intelligence. Computational difficulties arise, however,
because probabilistic models with the necessary realism and flexibility lead to com-
plex distributions over high-dimensional spaces.

Related problems in other fields have been tackled using Monte Carlo methods based
on sampling using Markov chains, providing a rich array of techniques that can be
applied to problems in artificial intelligence. The “Metropolis algorithm” has been
used to solve difficult problems in statistical physics for over forty years, and, in the
last few years, the related method of “Gibbs sampling” has been applied to problems
of statistical inference. Concurrently, an alternative method for solving problems
in statistical physics by means of dynamical simulation has been developed as well,
and has recently been unified with the Metropolis algorithm to produce the “hybrid
Monte Carlo” method. In computer science, Markov chain sampling is the basis
of the heuristic optimization technique of “simulated annealing”, and has recently
been used in randomized algorithms for approximate counting of large sets.

In this review, I outline the role of probabilistic inference in artificial intelligence,
present the theory of Markov chains, and describe various Markov chain Monte
Carlo algorithms, along with a number of supporting techniques. I try to present a
comprehensive picture of the range of methods that have been developed, including
techniques from the varied literature that have not yet seen wide application in
artificial intelligence, but which appear relevant. As illustrative examples, I use the
problems of probabilistic inference in expert systems, discovery of latent classes from
data, and Bayesian learning for neural networks.
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Index to Examples

Defi- Statistical Gibbs Metropolis | Stochastic Hybrid
Type of model nition Inference Sampling | Algorithm | Dynamics | Monte Carlo
Gaussian distribution 9 15, 19 64 83, 84
Latent class model 10 21 51 POS POS POS
Belief network 10 * 50 POS NA NA
Multi-layer perceptron 12 16, 19, 22, 35 INF 58 7 81
2D Ising model 26 NA 49 57 NA NA
Lennard-Jonesium 27 NA INF 57 76 POS

NA — Not applicable, INF — Probably infeasible, POS — Possible, but not discussed

* Statistical inference for the parameters of belief networks is quite possible, but this
review deals only with inference for the values of discrete variables in the network.



1. Introduction

Probability is a well-understood method of representing uncertain knowledge and reasoning
to uncertain conclusions. It is applicable to low-level tasks such as perception, and to high-
level tasks such as planning. In the Bayesian framework, learning the probabilistic models
needed for such tasks from empirical data is also considered a problem of probabilistic in-
ference, in a larger space that encompasses various possible models and their parameter
values. To tackle the complex problems that arise in artificial intelligence, flexible meth-
ods for formulating models are needed. Techniques that have been found useful include
the specification of dependencies using “belief networks”, approximation of functions using
“neural networks”, the introduction of unobservable “latent variables”, and the hierarchical
formulation of models using “hyperparameters”.

Such flexible models come with a price however. The probability distributions they give rise
to can be very complex, with probabilities varying greatly over a high-dimensional space.
There may be no way to usefully characterize such distributions analytically. Often, however,
a sample of points drawn from such a distribution can provide a satisfactory picture of it.

In particular, from such a sample we can obtain Monte Carlo estimates for the expectations

of various functions of the variables. Suppose X = {Xj,...,X,} is the set of random
variables that characterize the situation being modeled, taking on values usually written as
T1,...,Tn, Or some typographical variation thereon. These variables might, for example,

represent parameters of the model, hidden features of the objects modeled, or features of
objects that may be observed in the future. The expectation of a function a(Xj, ..., X,)
— it’s average value with respect to the distribution over X — can be approximated by

(a) = Zu-Za(jl,...,fcn)P(Xl:fl,...,anfn) (1.1)

1 =
N

t=

—

a(@\,. .., 2®) (1.2)

Q

where xgt), ey ng ) are the values for the ¢-th point in a sample of size N. (As above, I will
often distinguish variables in summations using tildes.) Problems of prediction and decision
can generally be formulated in terms of finding such expectations.

Generating samples from the complex distributions encountered in artificial intelligence
applications is often not easy, however. Typically, most of the probability is concentrated
in regions whose volume is a tiny fraction of the total. To generate points drawn from
the distribution with reasonable efficiency, the sampling procedure must search for these
relevant regions. It must do so, moreover, in a fashion that does not bias the results.

Sampling methods based on Markov chains incorporate the required search aspect in a
framework where it can be proved that the correct distribution is generated, at least in
the limit as the length of the chain grows. Writing X®) = {Xft), Ce X,(f)} for the set of
variables at step t, the chain is defined by giving an initial distribution for X(©) and the
transition probabilities for X(*) given the value for X(*~1). These probabilities are chosen
so that the distribution of X converges to that for X as t increases, and so that the
Markov chain can feasibly be simulated by sampling from the initial distribution and then,
in succession, from the conditional transition distributions. For a sufficiently long chain,
equation (1.2) can then be used to estimate expectations.
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Typically, the Markov chain explores the space in a “local” fashion. In some methods,
for example, z(*) differs from (!~ in only one component of the state — e.g.. it may
differ with respect to z;, for some ¢, but have xg-t) = xg-tfl) for j # i. Other methods
may change all components at once, but usually by only a small amount. Locality is often
crucial to the feasibility of these methods. In the Markov chain framework, it is possible to
guarantee that such step-by-step local methods eventually produce a sample of points from
the globally-correct distribution.

My purpose in this review is to present the various realizations of this basic concept that
have been developed, and to relate these methods to problems of probabilistic reasoning and
empirical learning in artificial intelligence. I will be particularly concerned with the potential
for Markov chain Monte Carlo methods to provide computationally feasible implementations
of Bayesian inference and learning. In my view, the Bayesian approach provides a flexible
framework for representing the intricate nature of the world and our knowledge of it, and
the Monte Carlo methods I will discuss provide a correspondingly flexible mechanism for
inference within this framework.

Historical development. Sampling methods based on Markov chains were first devel-
oped for applications in statistical physics. Two threads of development were begun forty
years ago. The paper of Metropolis, et al (4:1953) introduced what is now known as the
Metropolis algorithm, in which the next state in the Markov chain is chosen by consider-
ing a (usually small) change to the state, and accepting or rejecting this change based on
how the probability of the altered state compares to that of the current state. Around the
same time, Alder and Wainwright (5:1959) developed the “molecular dynamics” method,
in which new states are found by simulating the dynamical evolution of the system. I will
refer to this technique as the dynamical method, since it can in fact be used to sample from
any differentiable probability distribution, not just distributions for systems of molecules.
Recently, these two threads have been united in the hybrid Monte Carlo method of Duane,
Kennedy, Pendleton, and Roweth (5:1987), and several other promising approaches have
also been explored.

A technique based on the Metropolis algorithm known as simulated annealing has been
widely applied to optimization problems since a paper of Kirkpatrick, Gelatt, and Vecchi
(6:1983). Work in this area is of some relevance to the sampling problems discussed in this
review. It also relates to one approach to solving the difficult statistical physics problem
of free energy estimation, which is equivalent to the problem of comparing different models
in the Bayesian framework. The Metropolis algorithm has also been used in algorithms for
approximate counting of large sets (see (Aldous, 7:1993) for a review), a problem that can
also be seen as a special case of free energy estimation.

Interest in Markov chain sampling methods for applications in probability and statistics
has recently become widespread. A paper by Geman and Geman (4:1984) applying such
methods to image restoration has been influential. More recently, a paper by Gelfand and
Smith (4:1990) has sparked numerous applications to Bayesian statistical inference. Work
in these areas has up to now relied almost exclusively on the method of Gibbs sampling, but
other methods from the physics literature should be applicable as well.

Probability has been applied to problems in artificial intelligence from time to time over
the years, and underlies much related work in pattern recognition (see, for example, (Duda
and Hart, 2:1973)). Only recently, however, has probabilistic inference become prominent, a
development illustrated by the books of Pearl (2:1988), concentrating on methods applicable
to expert systems and other high-level reasoning tasks, and of Szelisksi (2:1989), on low-
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level vision. Much of the recent work on “neural networks”, such as that described by
Rumelhart, McClelland, and the PDP Research Group (2:1986), can also be regarded as
statistical inference for probabilistic models.

Applications in artificial intelligence of Markov chain Monte Carlo methods could be said to
have begun with the work on optimization using simulated annealing. This was followed by
the work on computer vision of Geman and Geman (4:1984) mentioned above, along with
work on the “Boltzmann machine” neural network of Ackley, Hinton, and Sejnowski (2:1985).
In the Boltzmann machine, the Gibbs sampling procedure is used to make inferences re-
lating to a particular situation, and also when learning appropriate network parameters
from empirical data, within the maximum likelihood framework. Pearl (4:1987) introduced
Gibbs sampling for “belief networks”, which are used to represent expert knowledge of a
probabilistic form. I have applied Gibbs sampling to maximum likelihood learning of belief
networks (Neal, 2:1992b).

True Bayesian approaches to learning in an artificial intelligence context have been investi-
gated only recently. Spiegelhalter and Lauritzen (2:1990), Hanson, Stutz, and Cheeseman
(2:1991), MacKay (2:1991, 2:1992b), Buntine and Weigend (2:1991), and Buntine (2:1992)
have done interesting work using methods other than Monte Carlo. I have applied Markov
chain Monte Carlo methods to some of the same problems (Neal, 2:1992a, 2:1992¢, 2:1993a).

Though these applications to problems in artificial intelligence are still in their infancy, I
believe the Markov chain Monte Carlo approach has great potential as a widely applicable
computational strategy, which is particularly relevant when problems are formulated in the
Bayesian framework.

Outline of this review. In Section 2, which follows, I discuss probabilistic inference
and its applications in artificial intelligence. This topic can be divided into inference using
a specified model, and statistical inference concerning the model itself. In both areas,
I indicate where computational problems arise for which Monte Carlo methods may be
appropriate. I also present some basic concepts of statistical physics which are needed to
understand the algorithms drawn from that field. This section also introduces a number of
running examples that will be used to illustrate the concepts and algorithms.

In Section 3, I define more precisely the class of problems for which use of Monte Carlo
methods based on Markov chains is appropriate, and discuss why these problems are difficult
to solve by other methods. I also present the basics of the theory of Markov chains, and
discuss recently developed theoretical techniques that may allow useful analytical results to
be derived for the complex chains encountered in practical work.

Section 4 begins the discussion of the algorithms themselves by presenting the Metropolis,
Gibbs sampling, and related algorithms. These most directly implement the idea of sam-
pling using Markov chains, and are applicable to the widest variety of systems. Section 5
then discusses the dynamical and hybrid Monte Carlo algorithms, which are applicable to
continuous systems in which appropriate derivatives can be calculated. Section 6 reviews
simulated annealing, free energy estimation, techniques for assessing and improving the ac-
curacy of estimates, and the potential for parallel implementations. These topics apply to
all the algorithms discussed.

I conclude in Section 7 by discussing possibilities for future research concerning Markov chain
Monte Carlo algorithms and their applications. Finally, I have included a comprehensive,
though hardly exhaustive, bibliography of work in the area.



2. Probabilistic Inference for Artificial Intelligence

Probability and statistics provide a basis for addressing two crucial problems in artificial
intelligence — how to reason in the presense of uncertainty, and how to learn from experi-
ence.

This statement is, of course, controversial. Many workers in artificial intelligence have argued
that probability is an inappropriate, or at least an incomplete, mechanism for representing
the sort of uncertainty encountered in everyday life. Much work in machine learning is
based on non-statistical approaches. Some of the arguments concerning these issues may be
seen in a paper by Cheeseman (2:1988) and the accompanying discussion. A book by Pearl
(2:1988) is a detailed development and defence of the use of probability as a representation
of uncertainty. In this review, I will take it as given that the application of probability and
statistics to problems in artificial intelligence is of sufficient interest to warrant investigating
the computational problems that these applications entail.

The role of probabilistic inference in artificial intelligence relates to long-standing contro-
versies concerning the interpretation of probability and the proper approach to statistical
inference. (Barnett (9:1982) gives a balanced presentation of the various views.) In the
frequency interpretation, a probability represents the long-run frequency of an event in a
repeatable experiment. It is meaningless with this interpretation to use probabilities in ref-
erence to unique events. We cannot, for example, ask what is the probability that Alexander
the Great played the flute, or that grandmother would enjoy receiving a cribbage set as a gift.
Such questions do make sense if we adopt the degree of belief interpretation, under which a
probability represents the degree to which we believe that the given evidence, together with
our prior opinions as to what is reasonable, warrant belief in the proposition in question.
This interpretation of probability is natural for applications in artificial intelligence.

Linked to these different views of probability are different views on how to find probabilistic
models from empirical data — in artificial intelligence terms, how to learn from experience.
As a simple example, suppose that we have flipped a coin ten times, and observed that eight
of these times it landed head-up. How can we use this data to develop a probabilistic model
of how the coin lands? The frequency interpretation of probability views the parameters
of the model — in this case, just the “true” probability that the coin will land head-up —
as fixed constants, about which it makes no sense to speak in terms of probability. These
constants can be estimated by various frequentist statistical procedures. We might, for
example, employ a procedure that estimates the probability of heads to be the observed
frequency, 8/10 in the case at hand, though this is by no means the only possible, or
reasonable, procedure.

The degree of belief interpretation of probability leads instead to a Bayesian approach to
statistical inference. In this framework, uncertainty concerning the parameters of the model
is expressed by means of a probability distribution over the possible parameter values. This
distribution is updated using Bayes’ rule as new information arrives. Mathematically, this
is a process of probabilistic inference similar to that used to deal with a particular case
using a fully specified model, a fact which we will see is very convenient computationally.
In the coin-tossing example above, a typical Bayesian inference procedure would produce a
probability distribution for the “true probability of heads” in which values around 8/10 are
more likely than those around, say, 1/10.

In this review, I will be primarily concerned with models where probability is interpreted as
a degree of belief, and with statistical inference for such models using the Bayesian approach,
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1 To T3 P(x1,x2,3)
CLEAR RISING DRY 0.40
CLEAR RISING WET 0.07
CLEAR FALLING DRY 0.08
CLEAR FALLING WET 0.10
CLOUDY RISING DRY 0.09
CLOUDY RISING WET 0.11
CLOUDY FALLING DRY 0.03
CLOUDY FALLING WET 0.12
X; = Sky clear or cloudy in the morning
X, = Barometer rising or falling in the morning
X3 = Dry or wet in the afternoon

Figure 2.1: The joint distribution for a model of the day’s weather.

but the algorithms described are also applicable to many problems that can be formulated
in frequentist terms. A number of texts on probability and statistics adopt the Bayesian
approach; I will here mention only the introductory books of Schmitt (9:1969) and Press
(9:1989), and the more advanced works of DeGroot (9:1970), Box and Tiao (9:1973), and
Berger (9:1985). Unfortunately, none of these are ideal as an introduction to the subject for
workers in artificial intelligence. Pearl (2:1988) discusses Bayesian probabilistic inference
from this viewpoint, but has little material on statistical inference or empirical learning.

2.1 Probabilistic inference with a fully-specified model

The least controversial applications of probability are to situations where we have accurate
estimates of all relevant probabilities based on numerous observations of closely parallel
cases. The frequency interpretation of probability is then clearly applicable. The degree
of belief interpretation is not excluded, but for reasonable people the degree of belief in an
event’s occurrence will be very close to its previously-observed frequency.

In this section, I discuss how such probabilistic models are formulated, and how they are
used for inference. Mathematically, this material applies also to models for unrepeatable
situations where the probabilities are derived entirely from subjective assessments — the
crucial point is that however the model was obtained, it is considered here to be specified
fully and with certainty.

Joint, marginal, and conditional probabilities. A fully-specified probabilistic model
gives the joint probability for every conceivable combination of values for the variables used
to characterize some situation of interest. Let these random variables be Xy, ..., X,, and,
for the moment, assume that each takes on values from some discrete set. The model is
then specified by the values of the joint probabilities, P(X; = z1,...,X,, = x,), for every
possible assignment of values, z1,...,z,, to the variables. I will generally abbreviate such
notation to P(x1,...,,) when the random variables involved are clear from the names of
the arguments. Figure 2.1 gives the joint distribution for a model of the day’s weather.

From these joint probabilities, marginal probabilities for subsets of the variables can be found
by summing over all possible combinations of values for the other variables. For example,
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if only the variables X3, ..., X, are relevant to our problem, we would be interested in the
marginal probabilities

P($1,...,$m) = Z'“ZP(xla"'axm;jﬂ%%la"'ajn) (21)
Tl Ty

I will often use notation in which the above formula can be written instead as follows, where
A={1,....m}and B={m+1,...,n}:

P({z; i€ A}) = > P{zi:ic A} {i;:jeB} (2.2)
{Z;:jeB}

That is, when “{z; : i € A}” occurs in a probability statement, it is equivalent to listing
all the x; for i € A, and when such an expression occurs in a summation, it represents a
multiple summation over all possible combinations of values for these variables.

From the joint distribution of Figure 2.1 we can calculate that P(CLEAR, RISING) = 0.47
and P(CLOUDY) = 0.35.

Conditional probabilities for one subset of variables, X; for i € A, given values for another
(disjoint) subset, X for j € B, are defined as ratios of marginal probabilities:
P({z; : i € A}, {z; : j € B})

P({w; : i€ A} | {z; : j € B}) P({z; : j€BY)

(2.3)

For the example of Figure 2.1, we can calculate that

P(DRY, CLEAR, RISING 0.40
P(DRY | CLEAR, RISING) = ( P(CLEAR. RISING) ) _ o 08

Seen as a statement about long-run frequencies, this says that of all those mornings with
clear sky and rising barometer, the proportion which were followed by a dry afternoon was
about 0.85. Interpreted in terms of degree of belief, it says that if we know that the sky
is clear and the barometer is rising in the morning, and we know nothing else of relevance,
then the degree of belief we should have that the weather will be dry in the afternoon is
about 0.85.

The ezxpected value or expectation of a function of a random variable is its average value
with respect to the probability distribution in question. The expectation of a(X), written
as (a) or Fla(X)], is defined as

(@ = ElaX)] = 3 a@P@) (2.4)

One can also talk about the expectation of a function conditional on certain variables taking
on certain values, in which case P(Z) above is replaced by the appropriate conditional
probability.

In this review, I will usually use (-) to denote expectation for variables that we are really
interested in, and E[-] to denote expectation for variables that are part of a Monte Carlo
procedure for estimating the interesting expectations.

Probability for continuous variables. Models in which the variables take on continuous
values are common as well. The model is then specified by giving the joint probability
density function for all the variables, which I will write using the same notation as for
probabilities, trusting context to make clear my meaning. The probability density function
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for X is defined to be such that [, P(x)dz is the probability that X lies in the region A.
Marginal densities are obtained as in equation (2.2), but with the summations replaced by
integrations. Conditional densities are defined as in equation (2.3). Expectations are also
defined as for discrete variables, but with integrals replacing summations.

A model may contain both discrete variables are continuous variables. In such cases, I will
again use the notation P(z1,...,x,), referring in this case to numbers that are hybrids of
probabilities and probability densities.

Not all distributions on continuous spaces can be specified using probability densities of the
usual sort, because some distributions put a non-zero probability mass in an infinitesimal
region of the space, which would correspond to an infinite probability density. In this
review, I will handle cases of this sort using the delta function, d(x,y), which is defined for
real arguments by the property that for any continuous function, f(-):

—+oo —+oo

f(@)é(z,y)di = f(@)o(y, z)dz = [(y) (2.5)

Clearly, no actual real-valued function has these properties, and hence expressions containing
delta functions must be manipulated with care to avoid fallacies — to be valid, they must
be true when d(x,y) is regarded as the limit of actual real-valued functions that are ever
more peaked about the line x = y and zero away from it.

As an example, if a variable, X, with range (0,1) has the probability density given by
P(z)=(1/2) + (1/2)6(1/3, ), then its distribution has half of the total probability spread
uniformly over (0, 1) and half concentrated at the point 1/3.

For discrete x and y, it will be convenient to define §(x,y) to be zero if x # y and one
if x = y. This allows some formulas to be written that apply regardless of whether the
variables are continuous or discrete. The following analogue of equation (2.5) holds:

S I@Ey) = X 1@ = 1) (26)

Conditioning on observed data. Typically, we are interested in conditioning with re-
spect to the variables whose values we know from observation, a process that can be viewed
as updating our beliefs in the light of new information. We can then use these conditional
probabilities in making decisions.

The model is generally specified in such a way that calculation of the full joint probabilities
is feasible, except perhaps for an unknown normalizing factor required to make them sum
to one. If we could calculate marginal probabilities easily (even up to an unknown factor)
we could use equation (2.3) to calculate conditional probabilities (with any unknown factor
cancelling out). Alternatively, from the conditional probabilities for all combinations of
values for the unobserved variables, given the observed values, we could find the conditional
probabilities for just the variables we are interested in by summing over the others, as
follows:

P({z; : i€ A} | {z; : j€B})
= Z P{z; : i€ A}, {@r : keC} | {z; : j€B}) (2.7)

{Z :keC}

In the weather example, suppose that we observe the sky to be cloudy in the morning, but
that we have no barometer. We wish to calculate the probability that it will be wet in the
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afternoon, and intend to go on a picnic if this probability is no more than 0.3. Here, we
must sum over the possible values for X5, the barometer reading. The calculation may be
made as follows:

P(WET|CLOUDY) = P(WET,RISING|CLOUDY) + P(WET, FALLING | CLOUDY)
= 0.11/0.35 + 0.12/0.35 = 0.66
We decide not to go for a picnic.

Unfortunately, neither the calculation of a marginal probability using equation (2.2) nor
the calculation for a conditional probability of equation (2.7) are feasible in more complex
situations, since they require time exponential in the number of variables summed over.

Such sums (or integrals) can, however, be estimated by Monte Carlo methods. Another way
to express the conditional probability of equations (2.3) and (2.7) is

P{z; :i€ A} | {z; : jeB}) =
> Y P{{aicie Ay {in : keCl|{z; 1 jeBY) - [[o(zid:) (28)

{z;:i€c A} {Zr:keC} icA

This expression has the form of an expectation with respect to the distribution for the X;
and X conditional on the known values of the X;. For discrete X, it can be evaluated
using the Monte Carlo estimation formula of equation (1.2), provided we can obtain a sample
from this conditional distribution. This procedure amounts to simply counting how often
the particular combination of X; values that we are interested in appears in the sample, and
using this observed frequency as our estimate of the corresponding conditional probability.

Here is yet another expression for the conditional probability:
P{z; : i€ A} |{z; : jeB}) =

Z P{ar : keC} | {z; : jeB}) Pz i€ A} | {&k : keC}, {z; : j€B) (2.9)
{Z :keC}

This, too, has the form of an expectation with respect to the distribution conditional on
the known values of the X;. In Monte Carlo estimation based on this formula, rather than
count how often the values for X; we are interested in show up, we average the conditional
probabilities, or probability densities, for those X;. This method still works for real-valued
X, for which we would generally never see an exact match with any particular z;.

Typically, we will wish to estimate these conditional probabilities to within some absolute
error tolerance. In the picnicking example, for instance, we may wish to know the probability
of rain to within £0.01. If we are interested in rare but important events, however, a relative
error tolerance will be more appropriate. For example, in computing the probability of
a nuclear reactor meltdown, the difference between the probabilities 0.3 and 0.4 is not
significant, since neither is acceptable, but the difference between a probability of 10~° and
one of 107 may be quite important.

Model specification. When the number of variables characterizing a situation is at all
large, describing their joint distribution by explicitly giving the probability for each com-
bination of values is infeasible, due to the large number of parameters required. In some
simple cases a more parsimonious specification is easily found. For variables that are inde-
pendent, for example, P(x1,...,x,) = P(z1)--- P(x,) and the distribution can be specified
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by giving the values of P(z;) for all i and x;.

In more complex cases, it can be a challenge to find a model that captures the structure of
the problem in a compact and computationally tractable form. Latent (or hidden) variables
are often useful in this regard (see, for example, (Everitt, 9:1984)). These variables are not
directly observable, and perhaps do not even represent objectively identifiable attributes of
the situation, but they do permit the probabilities for the observable (or visible) variables
to be easily specified as a marginal distribution, with the latent variables summed over. In
addition to their practical utility, these models have interest for artificial intelligence because
the latent variables can sometimes be viewed as abstract features or concepts.

Models are often characterized as either parametric or non-parametric. These terms are
to some degree misnomers, since all models have parameters of some sort or other. The
distinguishing characteristic of a “non-parametric” model is that these parameters are suf-
ficiently numerous, and employed in a sufficiently flexible fashion, that they can be used to
approximate any of a wide class of distributions. The parameters also do not necessarily
represent any meaningful aspects of reality. In contrast, a parametric model will generally
be capable of representing only a narrow class of distributions, and its parameters will often
have physical interpretations.

By their nature, non-parametric models are virtually never specified in detail by hand. They
are instead learned more or less automatically from training data. In contrast, a parametric
model with physically meaningful parameters might sometimes be specified in full by a
knowledgeable expert.

We can also distinguish between models that define a joint probability distribution for
all observable variables and those that define only the conditional distributions for some
variables given values for some other variables (or even just some characteristics of these
conditional distributions, such as the expected value). The latter are sometimes referred to
as regression or classification models, depending on whether the variables whose conditional
distributions they model are continuous or discrete.

Example: Gaussian distributions. The Gaussian or Normal distribution is the archetype of
a parametric probability distribution on a continuous space. It is extremely popular, and
will be used later as a model system for demonstrating the characteristics of Markov chain
Monte Carlo algorithms.

The univariate Gaussian distribution for a real variable, X, has the following probability

density function:

P(x) = L exp (—(z — ,u)2/202) (2.10)

2mo

Here, ;1 and o2 are the parameters of the distribution, with p being the mean of the distri-
bution, equal to (x), and ¢? being the variance, equal to ((x — (x))?). The square root of
the variance is the standard deviation, given by o.

The multivariate generalization of the Gaussian distribution, for a vector X, of dimension-
ality n, has probability density

P(z) = (2m) "*(det2) " 2exp (—3(z — p) TS (& — p)) (2.11)

The mean of the distribution is given by the vector p, while the variance is generalized to
the covariance matriz, 32, which is symmetric, and equal to {(z — p)(z — pu)T).



2.1 Probabilistic inference with a fully-specified model

In low dimensions, the family of Gaussian distributions is too simple to be of much intrinsic
interest from the point of view of artificial intelligence. As the dimensionality, n, increases,
however, the number of parameters required to specify an arbitrary Gaussian distribution
grows as n?, and more parsimonious representations become attractive. Factor analysis

involves searching for such representations in terms of latent variables (see (Everitt, 9:1984)).

Example: Latent class models. The simplest latent variable models express correlations
among the observable variables by using a single latent class variable that takes on values
from a discrete (and often small) set. The observable variables are assumed to be indepen-
dent given knowledge of this class variable. Such models are commonly used in exploratory
data analysis for the social sciences. Responses to a survey of opinions on public policy
issues might, for example, be modeled using a latent class variable with three values that
could be interpreted as “conservative”, “liberal”, and “apolitical”. Latent class models have
been used in artificial intelligence contexts by Cheeseman, et al (2:1988), Hanson, Stutz,
and Cheeseman (2:1991), Neal (2:1992¢), and Anderson and Matessa (2:1992), though not
always under this name.

Due to the independence assumption, the joint distribution for the class variable, C', and
the visible variables, V1,...,V,,, can be written as

P(c,v1,...,0n) = P(C)Hp(vj|c) (2.12)

The model is specified by giving the probabilities on the right of this expression explicitly,
or in some simple parametric form. For example, if there are two classes (0 and 1), and the
V; are binary variables (also taking values 0 and 1), we need only specify a« = P(C = 1) and
the B¢ = P(V; =1 | C ={). The joint probabilities can then be expressed as

P(c,vr,..on) = a®(1—a) T B (1= Bey)' ¥ (2.13)

Jj=1

The above specification requires only 2n 4 1 numbers, many fewer than the 2" — 1 numbers
needed to specify an arbitrary joint distribution for the observable variables. Such a reduc-
tion is typical when a parametric model is used, and is highly desirable if we in fact have good
reason to believe that the distribution is expressible in this restricted form. A latent class
model with many more than just two classes could be employed as a non-parametric model,
since as the number of classes increases, any distribution can be approximated arbitrarily
closely.

The marginal distribution for the observable variables in a latent class model is given by

P(vi,...,v,) = ZP(é,vl,...,vn) (2.14)

Since only one latent variable is involved, these marginal probabilities can easily be computed
(assuming the number of classes is manageable). In fact, conditional probabilities for any
set of observable variables given the values for any other set can also be calculated without
difficulty. There is thus no need to use Monte Carlo methods for probabilistic inference
when the model is of this simple sort, provided it is fully specified.

Example: Belief networks. More complex latent variable models can be constructed using
belief networks, which can also be used for models where all variables are observable. These
networks, which are also referred to as Bayesian networks, causal networks, influence di-
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2.1 Probabilistic inference with a fully-specified model

poor sanitation traffic accident gunshot wound

NN NS

pneumonia cholera brain injury brain tumor

NN NN

fever diarrhea coma

Figure 2.2: A fragment of a hypothetical belief network for medical diagnosis. The full network
would contain many more variables and many more connections than are shown here.

agrams, and relevance diagrams, have been developed for expert systems applications by
Pearl (2:1988) and others (see (Oliver and Smith, 2:1990)). For a tutorial on their use
in such applications, see (Charniak, 2:1991). They can also be viewed as non-parametric
models to be learned from empirical data (Neal, 2:1992b).

A belief network expresses the joint probability distribution for a set of variables, with an
ordering, X1, ..., X,, as the product of the conditional distributions for each variable given
the values of variables earlier in the ordering. Only a subset of the variables preceding X,
its parents, P;, are relevant in specifying this conditional distribution. The joint probability

can therefore be written as
n

P(zy,...,xn) = [[P@il{x;:jeP}) (2.15)

=1

Note that some variables will have no parents (i.e. P; will be empty), in which case the
conditional probability above will be just the marginal probability for that variable. The
latent class model of equation (2.12) can be regarded as a simple belief network in which
the class variable has no parents, and is the only parent of all the visible variables.

When a variable has many parents, various ways of economically specifying its conditional
probability have been employed, giving rise to various types of belief network. For example,
conditional distributions for binary variables can be specified by the “noisy-OR” method
(Pearl, 2:1988) or the “logistic” (or “sigmoid”) method (Spiegelhalter and Lauritzen, 2:1990,
Neal, 2:1992b)). For the latter, the probabilities are as follows:

P(X;=11{z;:jeP}) = o X wiay) (2.16)
JEP:
where o(z) = 1/(1+ exp(—=2)), and the w;; are parameters of the model. Of course, not all
conditional distributions can be put in this form.

The structure of a belief network can be represented as a directed acyclic graph, with
arrows drawn from parents to children. Figure 2.2 shows the representation of a fragment
of a hypothetical belief network intended as a parametric model for medical diagnosis. The
variables here are all binary, representing the presence or absence of the stated condition,
and are ordered from top to bottom (with no connections within a layer). Arrows out of
“traffic accident” and “gunshot wound” indicate that these are relevant in specifying the
conditional probability of “brain injury”. The lack of an arrow from “poor sanitation” to

11



2.1 Probabilistic inference with a fully-specified model

“brain injury” indicates that the former is not relevant when specifying the conditional
probability of “brain injury” given the variables preceding it. For the model to be fully
specified, this graphical structure must, of course, be accompanied by actual numerical
values for the relevant conditional probabilities, or for parameters that determine these.

The diseases in the middle layer of this belief network are mostly latent variables, invented
by physicians to explain patterns of symptoms they have observed in patients. The symp-
toms in the bottom layer and the underlying causes in the top layer would generally be
considered observable. Neither classification is unambiguous — one might consider micro-
scopic observation of a pathogenic microorganism as a direct observation of a disease, and,
on the other hand, “fever” could be considered a latent variable invented to explain why
some patients have consistently high thermometer readings.

In any case, many of the variables in such a network will not, in fact, have been observed,
and inference will require a summation over all possible combinations of values for these
unobserved variables, as in equation (2.7). To find the probability that a patient with
certain symptoms has cholera, for example, we must sum over all possible combinations of
other diseases the patient may have as well, and over all possible combinations of underlying
causes. For a complex network, the number of such combinations will be enormous. For
some networks with sparse connectivity, exact numerical methods are nevertheless feasible
(Pearl, 2:1988, Lauritzen and Spiegelhalter, 2:1988). For general networks, Markov chain
Monte Carlo methods are an attractive approach to handling the computational difficulties
(Pearl, 4:1987).

Example: Multi-layer perceptrons. The most widely-used class of “neural networks” are the
multi-layer perceptron (or backpropagation) networks (Rumelhart, Hinton, and Williams,
2:1986). These networks can be viewed as modeling the conditional distributions for an
output vector, Y, given the various possible values of an input vector, X. The marginal
distribution of X is not modeled, so these networks are suitable only for regression or classi-
fication applications, not (directly, at least) for applications where the full joint distribution
of the observed variables is required. Multi-layer perceptrons have been applied to a great
variety of problems. Perhaps the most typical sorts of application take as input sensory infor-
mation of some type and from that predict some characteristic of what is sensed. (Thodberg
(2:1993), for example, predicts the fat content of meat from spectral information.)

Multi-layer perceptrons are almost always viewed as non-parametric models. They can have
a variety of architectures, in which “input”, “output”, and “hidden” units are arranged
and connected in various fashions, with the particular architecture (or several candidate
architectures) being chosen by the designer to fit the characteristics of the problem. A
simple and common arrangement is to have a layer of input units, which connect to a layer
of hidden units, which in turn connect to a layer of output units. Such a network is shown
in Figure 2.3. Architectures with more layers, selective connectivity, shared weights on
connections, or other elaborations are also used.

The network of Figure 2.3 operates as follows. First, the input units are set to their observed
values, = {z1,...,2m}. Values for the hidden units, h = {hq,..., hp}, and for the output

units, o = {01, ...,0,}, are then computed as functions of = as follows:
hie(x) = f(uko + 2 unjz;) (2.17)
J
o(x) = g(vo+ 2 vihi(z)) (2.18)
k

12



2.2 Statistical inference for model parameters

// \

Output Units

Hidden Units

N

Q O Q Input Units

Figure 2.3: A multi-layer perceptron with one layer of hidden units. The input units at the bottom
are fixed to their values for a particular case. The values of the hidden units are then computed,
followed by the values of the output units. The value of a unit is a function of the the weighted
sum of values received from other units connected to it via arrows.

Here, uy; is the weight on the connection from input unit j to hidden unit &, with uxo being
a “bias” weight for hidden unit k. Similarly, the v, are the weights on connections into the
output units. The functions f and g are used to compute the activity of a hidden or output
unit from the weighted sum over its connections. Generally, the hidden unit function, f,
and perhaps g as well, are non-linear, with f(z) = tanh(z) being a common choice. This
non-linearity allows the hidden units to represent “features” of the input that are useful in
computing the appropriate outputs. The hidden units thus resemble latent variables, with
the difference that their values can be found with certainty from the inputs (in this sense,
they are not “hidden” after all).

The conditional distribution for Y = {¥1,...,Y,} given x = {x1, ..., 2y} is defined in terms
of the values of the output units computed by the network when the input units are set to
x. If the Y; are real-valued, for example, independent Gaussian distributions with means of
0;(x) and some predetermined “noise” variance, o2, might be appropriate. The conditional
distribution would then be

=TT o (a@) —w)?
Pule = 11 5 ew(-257") (2.19)

Note that the computations required for the above can be performed easily in time propor-
tional to the number of connections in the network. There is hence no need to use Monte
Carlo methods with these networks once their weights have been determined.

2.2 Statistical inference for model parameters

The models described above are fully specified only when the values of certain model param-
eters are fixed — examples are the parameters o and 3; for the latent class model, and the
weights uy; and vy, for a multi-layer perceptron. Determining these parameters from em-
pirical data is a task for statistical inference, and corresponds to one concept of learning in
artificial intelligence. The frequentist approach to statistics addresses this task by attempt-
ing to find procedures for estimating the parameters that can be shown to probably produce
“good” results, regardless of what the true parameters are. Note that this does not imply
that the values actually found in any particular instance are probably good — indeed, such
a statement is generally meaningless in this framework. In contrast, the Bayesian approach
reduces statistical inference to probabilistic inference by defining a joint distribution for
both the parameters and the observable data. Conditional on the data actually observed,
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2.2 Statistical inference for model parameters

posterior probability distributions for the parameters and for future observations can then
be obtained.

Statistical inference is applicable only when the potentially observable variables come in
groups of similar structure — each applying to a particular case — with the distributions
of the variables in different cases being related in some way. The values seen for the cases
that have been observed — the training cases, in machine learning terminology — can then
tell us something about the distribution for the unseen cases. The simplest assumption,
made for all the examples in this review, is that, given the values of the model parameters,
the observable (and latent) variables for one case are independent of the variables for the
other cases, and the distributions of these variables are the same for all cases. On this
assumption, if X; = {Xj1, ..., X;,} are the variables for case i, and 0 = {61, ...,6,} are the
model parameters, we can write the distribution of the variables for all cases as

P(z1,23,...10) = [[P@il60) = ] P@i,...,win|61,....6,) (2.20)

with P(x;1,...,%in | 01,...,0p) being a function only of the model parameters and of the
values x;;, not of ¢ itself. The number of cases is considered indefinite, though in any
particular instance we will be concerned only with whatever number of cases have been
observed, plus whatever number of unobserved cases we would like to make predictions for.
(Note that the variables used to express the models of the preceding section will in this
section acquire an additional index, to distinguish the different cases. Also, while in the
previous section the model parameters were considered fixed, and hence were not explicitly
noted in the formulas, in this section the distribution for the data will be shown explicitly
to depend on the parameter values.t)

I will use coin tossing as a simple illustrative problem of statistical inference. In this example,
each case, X;, consists of just one value, representing the result of tossing a particular coin
for the i-th time, with X; = 1 representing heads, and X; = 0 representing tails. We model
the coin as having a “true” probability of landing heads given by a single real number, 6,
in the interval [0, 1]. The probability of a particular series of tosses, x1,...,z¢, is then

P(zy,...,zc | 0) = J[o"(1-0"" = 91— (2.21)

where C1 = ), x;, i.e. the number of the z; that are one (heads), and Cy = C'— C1, i.e. the
number that are zero (tails).

The machine learning literature distinguishes between supervised and unsupervised learning.
Supervised learning can be seen as statistical inference for a regression or classification
model, in which only the conditional distributions of certain variables are modeled, whereas
unsupervised learning can (on one interpretation, at least) be seen as statistical inference
for a model that defines the joint probability of all observable variables.

Maximum likelihood inference. The probability that a model with particular param-
eters values assigns to the data that has actually been observed (with any unobserved
variables being summed over) is called the likelihood. For example, if cases X7, ..., X¢ have
been observed in their entirety (and nothing else has been observed), then the likelihood is

1 show this dependence by writing the parameter as if it were a variable on whose value we are conditioning.
This is fine for Bayesians. Others may object on philosophical grounds, but will likely not be confused.
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2.2 Statistical inference for model parameters

C
L0 | 21,....,2c) = Plar,...,ac|0) = []Plil0) (2.22)
i=1
The likelihood is regarded as a function of the model parameters, with given data, and is
considered significant only up to multiplication by an arbitrary factor. It encapsulates the
relative abilities of the various parameter values to “explain” the observed data, which may
be considered a measure of how plausible the parameter values are in light of the data. In
itself, it does not define a probability distribution over parameter values, however — for
that, one would need to introduce some measure on the parameter space as well.?

The widely used mazimum likelihood procedure estimates the parameters of the model to
be those that maximize the likelihood given the observed data. In practice, the equivalent
procedure of maximizing the log of the likelihood is usually found to be more convenient.

For the coin tossing example, the log likelihood function given data on C flips, obtained
from equation (2.21), is

logL(0 | x1,...,z¢) = Cilog(d) + Chlog(l—0) (2.23)

The maximum likelihood estimate for the “true” probability of heads is easily found to be
6 = C1/C, i.e. the frequency of heads in the observed flips.

For a large class of models, the maximum likelihood procedure has the frequentist justifica-
tion that it converges to the true parameter values in the limit as the number of observed
cases goes to infinity. This is not always the case, however, and even when it is, the quality
of such estimates when based on small amounts of data may be poor. One way to address
such problems is to choose instead the parameters that maximize the log likelihood plus
a penalty term, which is intended to bias the result away from “overfitted” solutions that
model the noise in the data rather the true regularities. This is the mazimum penalized
likelihood method. The magnitude of the penalty can be set by hand, or by the method of
cross validation (for example, see (Efron, 9:1979)).

Naively, at least, predictions for unobserved cases in this framework are done using the single
estimate of the parameters found by maximizing the likelihood (or penalized likelihood).
This is not always very reasonable. For the coin tossing example, if we flip the coin three
times, and each time it lands heads, the maximum likelihood estimate for the probability of
heads is one, but the resulting prediction that on the next toss the coin is certain to land
head-up is clearly not warranted.

Example: Univariate Gaussian. Suppose that X;,..., X¢ are independent, and that each
has a univariate Gaussian distribution with the same parameters, p and o, with ¢ being
known, but p not known. We can estimate x4 by maximum likelihood. From equation (2.10),
the likelihood function can be found:

C

c
1
Lol arveiae) = I[Pt = [] =
i=1 = V2mo

Taking the logarithm, for convenience, and discarding terms that do not involve u, we get:

exp (— (z; — p)*/20%) (2.24)

2The definition of likelihood given here is that used by careful writers concerned with foundational issues.
Unfortunately, some Bayesians have taken to using “likelihood” as a synonym for “probability”, to be
used only when referring to observed data. This has little practical import within the Bayesian school, but
erases a distinction important to those of some other schools who are happy to talk about the “likelihood
that & = 07, but who would never talk about the “probability that § = 0”.
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1 C
logL(p | @1,....2¢0) = —5—5 Y (zi—p)? (2.25)

202 <
1=1

The value of p that maximizes this is the arithmetic average of the observed values:
1 &
- 5;‘75 = z (2.26)

One virtue of this estimate, from the frequentist perspective, is that it is unbiased — for
any true value of u, the expected value of the estimate, [, is equal to the true value, the
expectation being taken with respect to the distribution that p defines for Xy, ..., X¢.

Example: Multi-layer perceptrons. The log of the likelihood for the parameters of the multi-
layer perceptron of Figure 2.3 (i.e. for the weight matrices v and v), given the training cases

(xlayl)a ceey ('ICayC)a is

1OgL(u’v | (xl’yl)""’('rC’yC)) = 1OgP(y]~""’yC | xl)"')'rC5 u’ v) (2'27)
C n
(or(xi) — yar)®
=1 I=1

where terms that do not depend on w or v have been omitted, as they are not significant.
Note that the functions o;(-) do depend on u and v (see equations (2.17) and (2.18)).
The above expression does not quite have the form of (2.22) because the network does not
attempt to model the marginal distribution of the Xj.

The objective of conventional neural network training is to minimize an “error” function
which is proportional to the negative of the above log likelihood. Such training can thus
be viewed as maximum likelihood estimation. Since the focus is solely on the conditional
distribution for the Y;, this is an example of supervised learning.

A local maximum of the likelihood of equation (2.28) can be found by gradient-based meth-
ods, using derivatives of log L with respect to the uy; and vy, obtained by the “backpropaga-
tion” method, an application of the chain rule (Rumelhart, Hinton, and Williams, 2:1986).
The likelihood is typically a very complex function of the weights, with many local max-
ima, and an enormous magnitude of variation. Perhaps surprisingly, simple gradient-based
methods are nevertheless capable